
Journal of Global Optimization 5: 267-276, 1994. 267
(~) 1994 Kluwer Academic Publishers. Printed in the Netherlands.

Topographical Global Optimization Using
Pre-Sampled Points

AIMO Tt)RN and SAMI VIITANEN
]tbo Akademi University, Computer Science Department, FIN-20520.4bo, Finland

(Received: 2 April 1993; accepted:22 September 1993)

Abstract. A method for global minimization of a function f (z) , z E A C / ~ by using presampled
global points in A is presented. The global points are obtained by uniform sampling, discarding points
too near an already accepted point to obtain a very uniform covering. The accepted points and their
nearest-neighbours matrix are stored on a file. When optimzing a given function these pre-sampled
points and the matrix are read from file. Then the function value of each point is computed and its k
nearest neighbours that have larger function values are marked. The points for which allits neighbours
are marked are extracted as promising starting points for local minimizations. Results from a parallel
implementation are presented. The working of a sequential version in Fortran is illustrated.

Key words: Global optimization, topography graph, parallel algorithms.

1. Introduction

The global minimum and minimizer of a function f(x) in A C R ~ is to be
determined. It is assumed that the problem is essentially unconstrained, i.e., that
the global minimum of f is attained in the interior of A and has a basin with
positive measure.

The method to be presented is a probabilistic method and may be classified as
belonging to the so-called clustering methods. In these (1) basins are determined
by sampling points at random, (2) points are concentrated to possible basins, (3)
these concentrations are identified (the concentrated points are clustered), and (4)
their corresponding local minima are determined by using some local optimization
algorithm. The techniques for concentrating are: either leaving out unpromising
points [1,3] or using a few steps of local optimization to bring the points nearer
to the local minima "attracting" them [3]. A review of clustering methods can be
found in [6].

The way to identify possible basins used here is based on using topographical
information about the objective function represented as a directed graph [5]. The
graph is connecting neighbouring points to each other by directed arcs pointing
towards points of larger function values. If such a graph is coveting enough it would
be sufficient to start a local optimizer from each local minimum in the graph, i.e.,
from a node with no incoming arc.

268 AIMO TORN AND SAMI VIITANEN

The basic topographical global optimatization method consists of the following
conceptual steps:

Uniform random sampling of points in the region of interest, A, is used to
explore the function in each subregion of A as well as possible. Ideally the sampling
should be such that at least one of the sampled points lies in the basin of the global
minimum.

The second conceptual step is to determine a subset S of the accepted sampled
points such that the points in this set represent the basins of all local minima
"detected" in the sampling step. This is done by constructing the so called topograph
which contains topographical information of the objective function represented by
the accepted points. The topograph is a directed graph with directed arcs connecting
the accepted sampled points on a k-nearest-neighbours basis, where the direction
of an arc is towards a point with a larger function value. The minima in the graph,
i.e., those points that have no better neighbours are part of this topographical
information. We let these minima be the set S. This is motivated by the observation
that for an increasing number of accepted points, these points would better and
better approximate all local minima of any reasonably smooth objective function.
The set S may be approximated by the set of points whose all neighbours have
larger function values [5].

The third conceptual step is to determine the local minima represented by the
set S. This is done by using the points in S (or a subset thereof) as starting points
for local minimizations. The best point so determined is then given as the result of
the global optimization effort.

Successful experiments with a sequential and a parallel realization of topo-
graphical global optimization are reported in [5]. In the parallel version the task
of determining nearest neighbours, the objective function evaluations task and the
local minimizations task were all parallelized.

This paper explores the following refinement. The topograph used to find graph
minima is mainly dependent on the sampled points. The function values of the
points will only affect the direction of the arcs. This means that given a number of
points covering the region of interest the undirected topograph could be computed
once and for all and stored for later use. The points could then either be loaded from
a file or be regenerated for the function evaluations needed to obtain the complete
topograph with directed arcs.

2. The Topographical Algorithm

The algorithm consists of two parts, "the sampler" and "the evaluator". The sam-
pler constructs the undirected topograph and the evaluator reads an undirected
topograph, constructs the topograph and performs the optimization.

TOPOGRAPHICAL GLOBAL OPTIMIZATION USING PRE-SAMPLED POINTS 269

2.1. THE SAMPLER

When sampling one attempts to distribute the points as evenly as possible across
the search area. The method for sampling presented here is by no means the only
one, and any other method known to produce a very uniform covering could be
used.

Due to the fact that the search area is not known in advance in this case, the
unit hypercube was chosen as an appropriate substitute. In order to force the sam-
pled points to cover the region better than what would be the case for uniform
random sampling, a threshold value is defined. Any sampled point falling within
this threshold distance to an existing point is discarded. For a given N and the
right choice of a threshold value a very uniform covering of the unit hypercube by
N points is obtained. The sampling itself is done with quite a simple algorithm,
presented below:

1. WHILE accepted < N DO

2. Sample a new point

3. Check its distance to all previously accepted points

4. IF nearest neighbour closer than 6 THEN reject point

ELSE accepted:= accepted + 1

In step 3 the Euclidean distance between points is used. The random number
generator used in step 2 is an implementation of the Combined Tausworthe Random
number generator by Tezuka and L'Ecuyer [2]. It has a cycle of 260 and is tested
to distribute points uniformly in hypercubes with dimension up to 15. This in
conjunction with discarding points that come too close to an already accepted point
should guarantee a very even distribution of the points. The coordinates of the
accepted points are stored in a matrix, the so called C-matrix.

Once N points have been accepted the sampling terminates and the undirected
topograph is created. It consists merely of a matrix, the so called knn-matrix,
containing the id:s (simply the indexes of the points in the G-matrix) of the k
nearest neighbours to every point, sorted by distance. Finally the C-and knn-
matrices are written on files from which they can be used by the evaluator.

2.2. CHOICE OF N

How should the sampling be terminated? When only few points are sampled the
resulting graph is rather crude and the graph minima will only represent some
of the local minima. For an increasing number of sampled points the graph will
approximate the objective flmction better and better and for reasonably smooth
functions it is expected that the graph minima will at some stage represent all
essential local minima.

270 AIMO TORN AND SAMI VIITANEN

The stopping condition should thus be based on the information that all parts of
the region of interest have been explored, i.e., that the sampled points well cover
the region. The number of points that need to be sampled in order for the probability
that at least one point will be in the basin L of the global minimum to be no less than
p is dependent on the relative size of this set. The probability is also dependent on
how uniformly the sampled points cover the region of interest - - random sampling
could require several times more points than some more uniform technique for the
probability to be the same [4]. However, the size of L is normally not known and
therefore this technique to determine the number of points to sample requires that
an assumption about the size of L is made.

Our technique to specify a threshold distance and discard any sampled point
within this distance to an existing point means that as the points cover the region
better and better it will become increasingly difficult to find a point that will be
accepted. Therefore a maximum number of successive discarded points could be
specified. When this maximum is reached the sampling will be terminated.

All these stopping conditions determine the effort that will be applied in search-
ing for a solution. For functions expensive to evaluate the effort will be measured in
number of function evaluations. Normally the information about the optimization
problem is insufficient to establish the relation of this number to the probability
that a point in the basin of the global minimum is obtained. In a real application
the stopping condition therefore in many cases would be given as the maximum
number of affordable function evaluations (available resources). The resources
available to solve a particular problem would be dependent on the savings expect-
ed in obtaining a good solution. In the presentation here we assume that the user
will express his expectations by specifying N.

2.3. THE EVALUATOR

The evaluator is the process that does the actual work. It starts with the matrices
created by the sampler and attempts to find the global minimum for a given function
within a given search area. This is achieved by the following algorithm:

1. Read the C-and knn-matrices

2. Scale the C-matrix to the actual search area

3. Calculate the function values for all N points

4. Identify the minima in the topograph

5. Start local minimizations from a number of minima

Steps 1 and 3 require no further comments. In step 2 the scaling should preserve
the hypercube in order not to distort the metrics. Step 4 consists of transforming
the knn-matrix (the undirected topograph) into a directed topograph and then
determining the minima in this graph.

TOPOGRAPHICAL GLOBAL OPTIMIZATION USING PRE-SAMPLED POINTS 271

The transformation is achieved by conceptually assigning signs to the knn-
matrix. This can be illustrated by an example: Assume that point number 22 is the
fifth nearest neighbour to point number 36. If now point number 22 has a lower
function value than point number 36 then the element (36,5) in the knn-matrix
will become -22 (unmarked), otherwise it will become +22 (marked). The signs
therefore represent the directed arcs in the graph, a positive sign representing the
"arrow head" of the arc, and a negative sign representing the "start" of the arc.

Finally the directed topograph is scanned for all rows that contain only arrow
heads (marked points). These rows represent points for which all k neighbours have
larger function values and thus are the minima in the topograph and may be used
as starting points for local minimizations. In order for this procedure to be exactly
correct it should additionally be checked that the point is not marked anywhere in
the topograph. However, in [5] it is argumented that this simpler procedure with a
slightly larger k does the same job.

The number of minima is of course heavily dependent on the value of k. For a
small k the number of potential minima is large, however for k = N the number will
be 1 (the point with the lowest function value of all). It is typical in applications
that the number of minima stabilizes and remains the same for a range of k-values.

The simplicity of the algorithm does have a few drawbacks. The assumption
that a lower function value than the surrounding imply a local minimum is a very
bold one. It holds only if the function is smooth within the surroundings inspected.
Therefore the algorithm does not perform too well if the problem function is
very ragged within small areas unless the raggedness means small perturbations
on a smooth function. Also, the larger the search area the further away are the
nearest neighbours. This means that for very large search areas the volume of the
surroundings inspected becomes very large. This exaggerates the effect of even
small raggedness and renders the algorithm useless for problems of this nature
unless the number of points, N, is chosen very large. However, not only this
algorithm will have difficulties in finding the global solution for such problems,
most algorithms will.

2.4. THE PARALLEL TRANSPUTER IMPLEMENTATION

The algorithm is implemented on the HATHI-2, a multi-transputer system located
o

at Abo Akademi University. The two parts of the algorithm are written as separate
programs. The implementation exists in three different versions utilizing 1+8, 1+16
or 1+32 processors.

The sampler is completely sequential because it is not considered to be time
critical. Some parallelism could be achieved by performing distance calculations in
parallel. This can be done by distributing the already accepted points evenly among
the available processors and then pipe-lining trial points through the processors.
In this way every processor would compare a trial point only with a subset of all
accepted points thus speeding up the comparisons, see [5]. But this would only be

272 AIMO TORN AND SAMI VIITANEN

TABLE I. Threshold distances for some values of N and r~

N '~ 2 3 4 5 6 7 8 9 10

100 0.088 0.216 0.361 0.495 0.623 0.745 0.864 0.978 1.088

200 0.060 0.166 0.285 0.410 0.522 0.630 0.738 0.840 0.940

useful in the case where N is large. Most testing was done with k = 10 and N =
100 or N = 200.

Some attempts were made to find a mathematical formula that would give an
optimal threshold distance given N and n. By optimal we mean the maximal
threshold distance for which N points could be obtained but N + 1 could not
within feasible time. The attempts did not come out too well. Therefore a more
basic "trial-and-error" method was used. Table I shows the values finally used. The
number of points to be sampled in order to obtain a uniform cover of the hypercube
with N points, N = 100, 200 for n E [1, 10] were in the range [19000,700 000]. The
uniform cover means that in most cases it would be very expensive or impossible to
place the N + 1 :st point. The time to run the Sampler measured in 1000 evaluations
of the Shekel 5 function (see [6]) were in the range [80, 1800]. From this it can
be concluded that re-using rather than re-sampling points that cover the hypercube
uniformly is profitable from an efficiency point of view. Other ways to produce the
uniform cover could be used as well. However, because the sampling is a one time
procedure the possible inefficiency of the method used here is not crucial.

The evaluator consists of two parts. The main program is run on one proces-
sor, the so called root processor, and performs steps 1, 2 and 4 of the algorithm
presented above in sequence. The second part (steps 3 and 5) is performed by P
(P = 8, 16, or 32) so called slave processors. These are connected in a one-way
ring starting and ending with the root. The ring topology was chosen because its
simplicity and because the fast communication between transputers results in only
very little overhead even for long tings. The N points are distributed evenly among
the P processors so that the function evaluations can be done in parallel. This par-
allelization of step 3 reduces the time required for the function evaluations by a
factor of P .

Step 4 is the key element in the implementation of the topographical algorithm.
The transformation of the undirected topograph to a directed one and the subsequent
identification of the minima in this graph are merged to a single scan of the knn-
matrix. During this scan the function values of the k neighbours to the current point
are compared to the function value of the current point. If the function value of any
of the k neighbours is lower than the function value of the current point, then the
current point is considered not to be a minimum in the topograph.

The implementation actually identifies k different sets of minima, one for each
value of the number of nearest neighbours in the range [1, k]. The program then
chooses the cluster size which is optimal with regard to P , i.e., the one that gives

TOPOGRAPHICAL GLOBAL OPTIMIZATION USING PRE-SAMPLED POINTS

TABLE II. Function independent overhead (unit: 1
Shekel 5)

n T1 (a) (b) (c) T3 TI+T3

2 431 9 35 13 57 488

4 651 19 55 13 87 738

6 870 28 75 14 117 987

10 1275 47 116 15 178 1453

273

the largest number of local minima still smaller than or equal to P. This is done
because in step 5 a maximum of P local minimizations can be done in parallel by
having every slave perform one local minimization.

Because we are mainly interested in the global part of the algorithm, local min-
imization (step 5) was not considered to be very important (any suitable method
would do). Nevertheless, to obtain a complete picture of the behavior of the algo-
rithm, a local minimization algorithm using gradient evaluations was written. The
next section presents the results.

2.5. EXPERIMENTAL RESULTS

The speed of the algorithm depends on a number of factors but can be given roughly
as T = T 1 + T2 + T3 + T4. T 1 here is the time it takes to read the C-matrix from
the file, T2 is the time spent performing function evaluations (T2 = Na/p, where
a is the time it takes to perform one function evaluation), T4 is the time spent
performing local minimizations (in reality the time it takes to perform the most
timeconsuming of the selected local minimizations). T3 is all the remaining time
and includes the times for scaling (a) and distributing (b) points, plus identifying
local minima (c). The times ofT1 and T3 are independent of the function optimized.
The values of these for the implementation using 1+32 transputers and a range of
n-values are given in Table II. The times are given using the unit: 1 Shekel 5
function evaluation.

The values for T1 are mean values. There are fluctuations (-4-25%) due to the
unpredictability of the wait times for file accesses.

T4 which is the time spent on doing the longest local search depends partly
on chance (i.e. how much work needs to be done to get from the starting point to
the true local minimum), partly on the efficiency of the local search algorithm (for
example how many function evaluations it needs to perform).

Results for some standard test functions [6] can be found in Table III. The
function evaluations listed include also those needed for gradient evaluations during
the local minimizations. The results for the three first test functions (1.13, 1.27,
2.07) could be compared with the results 1.9, 2.3, 2.6 obtained without using pre-
sampled points. However, the total number of points sampled in this latter case
was only a small fraction of those used in the pre-sampled case meaning that the

274 AIMO TORN AND SAMI VIITANEN

TABLE III. Results by using 1 + 32 processors for standard test functions
(average over 20 runs)

Test function f
RCOS Shekel 5 Hartman 6 Griewank 10

Dimensionality of f 2 4 6 10
of local minimizations 15 21 22 27
Function evaluation 122 98 168 283
T4 (unit: 103 Shekel 5) 0.11 0.22 0.80 5.30
T (unit: 103 Shekel 5) 1.13 1.27 2.07 7.10

points used in the latter case were only slightly more uniformly distributed than
points sampled from the uniform distribution and thus not of the same quality as
the pre-sampled points.

3. A Sequential Fortran Algorithm

Below the working of a Fortran implementation of the sequential algorithm is given
for the problem RCOS. The code consists of three parts: the user interface part,
the sampling part, and the minimization part. No local optimization is performed
in this version. The user should write the code for computing function values. The
user first asks the program either to sample or to minimize. The user is requested
to give the name of a file giving problem information, i.e., n and the coordinates
of the hypercube.

For sampling the following parameters should be submitted by the user: the
number of global points to sample (N), the threshold distance (THRESH) for the
sampling phase to avoid points near to each other, whether the sampling should be
performed in the unit hypercube or other area, and two seeds for the random number
generator. The sampling area should be a hypercube. On sampling the coordinates
of each point accepted is printed togethe r with the cumulative number of points
discarded. For an example see the output below for N = 100 and THRESH = 0.087:

ID
1
2

98
99

100

DISCARDED x l x2
0.55 0.42

0 0.50 0.73

5050 0.68 0.62
8918 0.00 0.57

18918
25180 0.29 1.00

It can be seen that in order to sample the requested 100 points 25180 points
were discarded. When the sampling is finished the user must submit the name of
the file to store the points and the C-matrix.

TOPOGRAPHICAL GLOBAL OPTIMIZATION USING PRE-SAMPLED POINTS 275

For optimizing the names of the problem information file and the file containing
the points and the C-matrix must be given. The result is then computed and stored
in a file named by the user. At the end of the optimization the ID of the local minima
in the graph for k = 1,2 18 are given together with the minima and minimizers
for all local minima for k = 18, see below:

K #MIN MINIMA
1 51 94 43 52
2 19 94 43 70
3 7 94 43 70
4 5 94 43 7O
5 4 94 43 70
6 3 94 43 70

18 3 94 43 70

70 16 49 66 88 24 35 59 28 27 ...
16493528 1 3 9 5 4 7 2 1 3 8 0 . . .
164939 13
16 49
16

THE 3 MINIMA FOR K=18

POINT 94 F(X)= 0.13661872E+01 X:
9.762428 3.427323

POINT 43 F(X)= 0.18809843E+01 X:
-3.226959 11.27771

POINT 70 F(X)= 0.31365552E+01 X:
3.009627 0.7506922

From the output one can see how the number of minima stabilizes when the
value of k grows. The three minima given as the result are near to the global
minima of RCOS. The result above is typical for the given parameter values of N
and THRESH.

On completion the result is stored in the user named file. The result consists
of the problem information, the global points used, their function values and the
information about the minima as illustrated above.

4. Conclusions and Discussion

Topographical global optimization using pre-sampled points is a method with
almost no overhead. This is because the work to find a uniform covering of the
region of interest, A, and the work to determine the nearest neighbour matrix giving
the undirected topograph can be performed once and for all for a given number of
dimensions n and global points N. For optimizing the stored points and the matrix
representing the undirected topograph are read from file, the function values of the

276 AIMO TORN AND SAMI VIITANEN

points are calculated giving the directed topograph from which the local minima of
the topograph are easily extracted, giving starting points for local minimizations.

In the parallel version of the algorithm the function evaluations can be performed
in parallel as well as the local minimizations which means linear speed up for the
ftmction evaluations. Also in many cases the local minimizations can be made at the
expense of just one local minimization. The size of the algorithms is very small (for
the sequential algorithm in Fortran the optimization part excluding the subroutines
for function evaluations and local minimization is only about 100 lines) which
makes the algorithm easily available for experimenting and possible inclusion in
other software.

Another way of sampling would be to sample in a smaller hypercube centered
at the latest accepted point until a prescribed number of rejections occurs. Then
sampling for a point in the hypercube H containing A is resumed and so on. The
sampling is terminated when a prescribed number of rejections in H is achieved.
Such a sampling is expected to be more efficient and would extend the applicability
of the method to problems where A is any region of positive measure and thus to
a subset of constrained problems.

References

1. R.Becker and G.Lag• (• 97•) A g••bal •ptimizati•n alg•rithm• in: Pr•ceedings •f the 8th Allert•n
Conference on Circuits and Systems Theory, Monticello, Illinois, 312pp.

2. S.Tezuka and EUEcuyer (1991) Efficient and Portable Combined Tausworthe Random Number
Generators, A CM Transactions on Modelling and Computer Simulation I (2), 99-112.

3. A.T0m (1974) Global optimization as a combination of global and local search, PhD. Thesis,
�9 ~bo Akademi, HH,~A A:13, 65pp.

4. A.TOrn (1978) A search-clustering approach to global optimization, in: Towards Global Opti-
mization 2, North-Holland, 49--62.

5. A.T/Srn and S. Viitanen (1992) Topographical Global Optimization, In: C. A. Floudas and P. M.
Pardalos (eds.), Recent Advances in Global Optimization, Princeton University Press, 384-398,

6. A.T~rn and A.7,ilinskas (1989) Global Optimization, Lecture Notes in Computer Science 350,
Springer-Vedag Berlin, 255pp.

