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Abstract. A method for global minimization of a function f ( z ) ,  z E A C / ~  by using presampled 
global points in A is presented. The global points are obtained by uniform sampling, discarding points 
too near an already accepted point to obtain a very uniform covering. The accepted points and their 
nearest-neighbours matrix are stored on a file. When optimzing a given function these pre-sampled 
points and the matrix are read from file. Then the function value of each point is computed and its k 
nearest neighbours that have larger function values are marked. The points for which allits neighbours 
are marked are extracted as promising starting points for local minimizations. Results from a parallel 
implementation are presented. The working of a sequential version in Fortran is illustrated. 
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1. Introduction 

The global minimum and minimizer of a function f(x) in A C R ~ is to be 
determined. It is assumed that the problem is essentially unconstrained, i.e., that 
the global minimum of f is attained in the interior of A and has a basin with 
positive measure. 

The method to be presented is a probabilistic method and may be classified as 
belonging to the so-called clustering methods. In these (1) basins are determined 
by sampling points at random, (2) points are concentrated to possible basins, (3) 
these concentrations are identified (the concentrated points are clustered), and (4) 
their corresponding local minima are determined by using some local optimization 
algorithm. The techniques for concentrating are: either leaving out unpromising 
points [1,3] or using a few steps of local optimization to bring the points nearer 
to the local minima "attracting" them [3]. A review of clustering methods can be 
found in [6]. 

The way to identify possible basins used here is based on using topographical 
information about the objective function represented as a directed graph [5]. The 
graph is connecting neighbouring points to each other by directed arcs pointing 
towards points of larger function values. If such a graph is coveting enough it would 
be sufficient to start a local optimizer from each local minimum in the graph, i.e., 
from a node with no incoming arc. 
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The basic topographical global optimatization method consists of the following 
conceptual steps: 

Uniform random sampling of points in the region of interest, A, is used to 
explore the function in each subregion of A as well as possible. Ideally the sampling 
should be such that at least one of the sampled points lies in the basin of the global 
minimum. 

The second conceptual step is to determine a subset S of the accepted sampled 
points such that the points in this set represent the basins of all local minima 
"detected" in the sampling step. This is done by constructing the so called topograph 
which contains topographical information of the objective function represented by 
the accepted points. The topograph is a directed graph with directed arcs connecting 
the accepted sampled points on a k-nearest-neighbours basis, where the direction 
of an arc is towards a point with a larger function value. The minima in the graph, 
i.e., those points that have no better neighbours are part of this topographical 
information. We let these minima be the set S. This is motivated by the observation 
that for an increasing number of accepted points, these points would better and 
better approximate all local minima of any reasonably smooth objective function. 
The set S may be approximated by the set of points whose all neighbours have 
larger function values [5]. 

The third conceptual step is to determine the local minima represented by the 
set S. This is done by using the points in S (or a subset thereof) as starting points 
for local minimizations. The best point so determined is then given as the result of 
the global optimization effort. 

Successful experiments with a sequential and a parallel realization of topo- 
graphical global optimization are reported in [5]. In the parallel version the task 
of determining nearest neighbours, the objective function evaluations task and the 
local minimizations task were all parallelized. 

This paper explores the following refinement. The topograph used to find graph 
minima is mainly dependent on the sampled points. The function values of the 
points will only affect the direction of the arcs. This means that given a number of 
points covering the region of interest the undirected topograph could be computed 
once and for all and stored for later use. The points could then either be loaded from 
a file or be regenerated for the function evaluations needed to obtain the complete 
topograph with directed arcs. 

2. The Topographical Algorithm 

The algorithm consists of two parts, "the sampler" and "the evaluator". The sam- 
pler constructs the undirected topograph and the evaluator reads an undirected 
topograph, constructs the topograph and performs the optimization. 
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2.1. THE SAMPLER 

When sampling one attempts to distribute the points as evenly as possible across 
the search area. The method for sampling presented here is by no means the only 
one, and any other method known to produce a very uniform covering could be 
used. 

Due to the fact that the search area is not known in advance in this case, the 
unit hypercube was chosen as an appropriate substitute. In order to force the sam- 
pled points to cover the region better than what would be the case for uniform 
random sampling, a threshold value is defined. Any sampled point falling within 
this threshold distance to an existing point is discarded. For a given N and the 
right choice of a threshold value a very uniform covering of the unit hypercube by 
N points is obtained. The sampling itself is done with quite a simple algorithm, 
presented below: 

1. WHILE accepted < N DO 

2. Sample a new point 

3. Check its distance to all previously accepted points 

4. IF nearest neighbour closer than 6 THEN reject point 

ELSE accepted:= accepted + 1 

In step 3 the Euclidean distance between points is used. The random number 
generator used in step 2 is an implementation of the Combined Tausworthe Random 
number generator by Tezuka and L'Ecuyer [2]. It has a cycle of 260 and is tested 
to distribute points uniformly in hypercubes with dimension up to 15. This in 
conjunction with discarding points that come too close to an already accepted point 
should guarantee a very even distribution of the points. The coordinates of the 
accepted points are stored in a matrix, the so called C-matrix. 

Once N points have been accepted the sampling terminates and the undirected 
topograph is created. It consists merely of a matrix, the so called knn-matrix, 
containing the id:s (simply the indexes of the points in the G-matrix) of the k 
nearest neighbours to every point, sorted by distance. Finally the C-and knn- 
matrices are written on files from which they can be used by the evaluator. 

2.2. CHOICE OF N 

How should the sampling be terminated? When only few points are sampled the 
resulting graph is rather crude and the graph minima will only represent some 
of the local minima. For an increasing number of sampled points the graph will 
approximate the objective flmction better and better and for reasonably smooth 
functions it is expected that the graph minima will at some stage represent all 
essential local minima. 
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The stopping condition should thus be based on the information that all parts of 
the region of interest have been explored, i.e., that the sampled points well cover 
the region. The number of points that need to be sampled in order for the probability 
that at least one point will be in the basin L of the global minimum to be no less than 
p is dependent on the relative size of this set. The probability is also dependent on 
how uniformly the sampled points cover the region of interest - -  random sampling 
could require several times more points than some more uniform technique for the 
probability to be the same [4]. However, the size of L is normally not known and 
therefore this technique to determine the number of points to sample requires that 
an assumption about the size of L is made. 

Our technique to specify a threshold distance and discard any sampled point 
within this distance to an existing point means that as the points cover the region 
better and better it will become increasingly difficult to find a point that will be 
accepted. Therefore a maximum number of successive discarded points could be 
specified. When this maximum is reached the sampling will be terminated. 

All these stopping conditions determine the effort that will be applied in search- 
ing for a solution. For functions expensive to evaluate the effort will be measured in 
number of function evaluations. Normally the information about the optimization 
problem is insufficient to establish the relation of this number to the probability 
that a point in the basin of the global minimum is obtained. In a real application 
the stopping condition therefore in many cases would be given as the maximum 
number of affordable function evaluations (available resources). The resources 
available to solve a particular problem would be dependent on the savings expect- 
ed in obtaining a good solution. In the presentation here we assume that the user 
will express his expectations by specifying N. 

2.3. THE EVALUATOR 

The evaluator is the process that does the actual work. It starts with the matrices 
created by the sampler and attempts to find the global minimum for a given function 
within a given search area. This is achieved by the following algorithm: 

1. Read the C-and knn-matrices 

2. Scale the C-matrix to the actual search area 

3. Calculate the function values for all N points 

4. Identify the minima in the topograph 

5. Start local minimizations from a number of minima 

Steps 1 and 3 require no further comments. In step 2 the scaling should preserve 
the hypercube in order not to distort the metrics. Step 4 consists of transforming 
the knn-matrix (the undirected topograph) into a directed topograph and then 
determining the minima in this graph. 
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The transformation is achieved by conceptually assigning signs to the knn- 
matrix. This can be illustrated by an example: Assume that point number 22 is the 
fifth nearest neighbour to point number 36. If now point number 22 has a lower 
function value than point number 36 then the element (36,5) in the knn-matrix 
will become -22 (unmarked), otherwise it will become +22 (marked). The signs 
therefore represent the directed arcs in the graph, a positive sign representing the 
"arrow head" of the arc, and a negative sign representing the "start" of the arc. 

Finally the directed topograph is scanned for all rows that contain only arrow 
heads (marked points). These rows represent points for which all k neighbours have 
larger function values and thus are the minima in the topograph and may be used 
as starting points for local minimizations. In order for this procedure to be exactly 
correct it should additionally be checked that the point is not marked anywhere in 
the topograph. However, in [5] it is argumented that this simpler procedure with a 
slightly larger k does the same job. 

The number of minima is of course heavily dependent on the value of k. For a 
small k the number of potential minima is large, however for k = N the number will 
be 1 (the point with the lowest function value of all). It is typical in applications 
that the number of minima stabilizes and remains the same for a range of k-values. 

The simplicity of the algorithm does have a few drawbacks. The assumption 
that a lower function value than the surrounding imply a local minimum is a very 
bold one. It holds only if the function is smooth within the surroundings inspected. 
Therefore the algorithm does not perform too well if the problem function is 
very ragged within small areas unless the raggedness means small perturbations 
on a smooth function. Also, the larger the search area the further away are the 
nearest neighbours. This means that for very large search areas the volume of the 
surroundings inspected becomes very large. This exaggerates the effect of even 
small raggedness and renders the algorithm useless for problems of this nature 
unless the number of points, N, is chosen very large. However, not only this 
algorithm will have difficulties in finding the global solution for such problems, 
most algorithms will. 

2.4. THE PARALLEL TRANSPUTER IMPLEMENTATION 

The algorithm is implemented on the HATHI-2, a multi-transputer system located 
o 

at Abo Akademi University. The two parts of the algorithm are written as separate 
programs. The implementation exists in three different versions utilizing 1+8, 1+16 
or 1+32 processors. 

The sampler is completely sequential because it is not considered to be time 
critical. Some parallelism could be achieved by performing distance calculations in 
parallel. This can be done by distributing the already accepted points evenly among 
the available processors and then pipe-lining trial points through the processors. 
In this way every processor would compare a trial point only with a subset of all 
accepted points thus speeding up the comparisons, see [5]. But this would only be 
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TABLE I. Threshold distances for some values of N and r~ 

N '~ 2 3 4 5 6 7 8 9 10 

100 0.088 0.216 0.361 0.495 0.623 0.745 0.864 0.978 1.088 

200 0.060 0.166 0.285 0.410 0.522 0.630 0.738 0.840 0.940 

useful in the case where N is large. Most testing was done with k = 10 and N = 
100 or N = 200. 

Some attempts were made to find a mathematical formula that would give an 
optimal threshold distance given N and n. By optimal we mean the maximal 
threshold distance for which N points could be obtained but N + 1 could not 
within feasible time. The attempts did not come out too well. Therefore a more 
basic "trial-and-error" method was used. Table I shows the values finally used. The 
number of points to be sampled in order to obtain a uniform cover of the hypercube 
with N points, N = 100, 200 for n E [1, 10] were in the range [ 19000,700 000]. The 
uniform cover means that in most cases it would be very expensive or impossible to 
place the N + 1 :st point. The time to run the Sampler measured in 1000 evaluations 
of the Shekel 5 function (see [6]) were in the range [80, 1800]. From this it can 
be concluded that re-using rather than re-sampling points that cover the hypercube 
uniformly is profitable from an efficiency point of view. Other ways to produce the 
uniform cover could be used as well. However, because the sampling is a one time 
procedure the possible inefficiency of the method used here is not crucial. 

The evaluator consists of two parts. The main program is run on one proces- 
sor, the so called root processor, and performs steps 1, 2 and 4 of the algorithm 
presented above in sequence. The second part (steps 3 and 5) is performed by P 
(P = 8, 16, or 32) so called slave processors. These are connected in a one-way 
ring starting and ending with the root. The ring topology was chosen because its 
simplicity and because the fast communication between transputers results in only 
very little overhead even for long tings. The N points are distributed evenly among 
the P processors so that the function evaluations can be done in parallel. This par- 
allelization of step 3 reduces the time required for the function evaluations by a 
factor of P .  

Step 4 is the key element in the implementation of the topographical algorithm. 
The transformation of the undirected topograph to a directed one and the subsequent 
identification of the minima in this graph are merged to a single scan of the knn- 
matrix. During this scan the function values of the k neighbours to the current point 
are compared to the function value of the current point. If the function value of any 
of the k neighbours is lower than the function value of the current point, then the 
current point is considered not to be a minimum in the topograph. 

The implementation actually identifies k different sets of minima, one for each 
value of the number of nearest neighbours in the range [1, k]. The program then 
chooses the cluster size which is optimal with regard to P ,  i.e., the one that gives 
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TABLE II. Function independent overhead (unit: 1 
Shekel 5) 

n T1 (a) (b) (c) T3 TI+T3 

2 431 9 35 13 57 488 

4 651 19 55 13 87 738 

6 870 28 75 14 117 987 

10 1275 47 116 15 178 1453 
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the largest number of local minima still smaller than or equal to P.  This is done 
because in step 5 a maximum of P local minimizations can be done in parallel by 
having every slave perform one local minimization. 

Because we are mainly interested in the global part of the algorithm, local min- 
imization (step 5) was not considered to be very important (any suitable method 
would do). Nevertheless, to obtain a complete picture of the behavior of the algo- 
rithm, a local minimization algorithm using gradient evaluations was written. The 
next section presents the results. 

2.5. EXPERIMENTAL RESULTS 

The speed of the algorithm depends on a number of factors but can be given roughly 
as T = T 1 + T2 + T3 + T4. T 1 here is the time it takes to read the C-matrix from 
the file, T2 is the time spent performing function evaluations (T2 = Na/p, where 
a is the time it takes to perform one function evaluation), T4 is the time spent 
performing local minimizations (in reality the time it takes to perform the most 
timeconsuming of the selected local minimizations). T3 is all the remaining time 
and includes the times for scaling (a) and distributing (b) points, plus identifying 
local minima (c). The times ofT1 and T3 are independent of the function optimized. 
The values of these for the implementation using 1+32 transputers and a range of 
n-values are given in Table II. The times are given using the unit: 1 Shekel 5 
function evaluation. 

The values for T1 are mean values. There are fluctuations (-4-25%) due to the 
unpredictability of the wait times for file accesses. 

T4 which is the time spent on doing the longest local search depends partly 
on chance (i.e. how much work needs to be done to get from the starting point to 
the true local minimum), partly on the efficiency of the local search algorithm (for 
example how many function evaluations it needs to perform). 

Results for some standard test functions [6] can be found in Table III. The 
function evaluations listed include also those needed for gradient evaluations during 
the local minimizations. The results for the three first test functions (1.13, 1.27, 
2.07) could be compared with the results 1.9, 2.3, 2.6 obtained without using pre- 
sampled points. However, the total number of points sampled in this latter case 
was only a small fraction of those used in the pre-sampled case meaning that the 
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TABLE III. Results by using 1 + 32 processors for standard test functions 
(average over 20 runs) 

Test function f 
RCOS Shekel 5 Hartman 6 Griewank 10 

Dimensionality of f 2 4 6 10 
# of local minimizations 15 21 22 27 
Function evaluation 122 98 168 283 
T4 (unit: 103 Shekel 5) 0.11 0.22 0.80 5.30 
T (unit: 103 Shekel 5) 1.13 1.27 2.07 7.10 

points used in the latter case were only slightly more uniformly distributed than 
points sampled from the uniform distribution and thus not of the same quality as 
the pre-sampled points. 

3. A Sequential Fortran Algorithm 

Below the working of a Fortran implementation of the sequential algorithm is given 
for the problem RCOS. The code consists of three parts: the user interface part, 
the sampling part, and the minimization part. No local optimization is performed 
in this version. The user should write the code for computing function values. The 
user first asks the program either to sample or to minimize. The user is requested 
to give the name of a file giving problem information, i.e., n and the coordinates 
of the hypercube. 

For sampling the following parameters should be submitted by the user: the 
number of global points to sample (N), the threshold distance (THRESH) for the 
sampling phase to avoid points near to each other, whether the sampling should be 
performed in the unit hypercube or other area, and two seeds for the random number 
generator. The sampling area should be a hypercube. On sampling the coordinates 
of each point accepted is printed togethe r with the cumulative number of points 
discarded. For an example see the output below for N = 100 and THRESH = 0.087: 

ID 
1 
2 

98 
99 

100 

DISCARDED x l  x2 
0.55 0.42 

0 0.50 0.73 

5050 0.68 0.62 
8918 0.00 0.57 

18918 
25180 0.29 1.00 

It can be seen that in order to sample the requested 100 points 25180 points 
were discarded. When the sampling is finished the user must submit the name of 
the file to store the points and the C-matrix. 
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For optimizing the names of the problem information file and the file containing 
the points and the C-matrix must be given. The result is then computed and stored 
in a file named by the user. At the end of the optimization the ID of the local minima 
in the graph for k = 1,2 ..... 18 are given together with the minima and minimizers 
for all local minima for k = 18, see below: 

K #MIN MINIMA 
1 51 94 43 52 
2 19 94 43 70 
3 7 94 43 70 
4 5 94 43 7O 
5 4 94 43 70 
6 3 94 43 70 

18 3 94 43 70 

70 16 49 66 88 24 35 59 28 27 ... 
16493528  1 3 9 5 4 7 2 1 3 8 0 . . .  
164939 13 
16 49 
16 

THE 3 MINIMA FOR K=18 

POINT 94 F(X)= 0.13661872E+01 X: 
9.762428 3.427323 

POINT 43 F(X)= 0.18809843E+01 X: 
-3.226959 11.27771 

POINT 70 F(X)= 0.31365552E+01 X: 
3.009627 0.7506922 

From the output one can see how the number of minima stabilizes when the 
value of k grows. The three minima given as the result are near to the global 
minima of RCOS. The result above is typical for the given parameter values of N 
and THRESH. 

On completion the result is stored in the user named file. The result consists 
of the problem information, the global points used, their function values and the 
information about the minima as illustrated above. 

4. Conclusions and Discussion 

Topographical global optimization using pre-sampled points is a method with 
almost no overhead. This is because the work to find a uniform covering of the 
region of interest, A, and the work to determine the nearest neighbour matrix giving 
the undirected topograph can be performed once and for all for a given number of 
dimensions n and global points N. For optimizing the stored points and the matrix 
representing the undirected topograph are read from file, the function values of the 



276 AIMO TORN AND SAMI VIITANEN 

points are calculated giving the directed topograph from which the local minima of 
the topograph are easily extracted, giving starting points for local minimizations. 

In the parallel version of the algorithm the function evaluations can be performed 
in parallel as well as the local minimizations which means linear speed up for the 
ftmction evaluations. Also in many cases the local minimizations can be made at the 
expense of just one local minimization. The size of the algorithms is very small (for 
the sequential algorithm in Fortran the optimization part excluding the subroutines 
for function evaluations and local minimization is only about 100 lines) which 
makes the algorithm easily available for experimenting and possible inclusion in 
other software. 

Another way of sampling would be to sample in a smaller hypercube centered 
at the latest accepted point until a prescribed number of rejections occurs. Then 
sampling for a point in the hypercube H containing A is resumed and so on. The 
sampling is terminated when a prescribed number of rejections in H is achieved. 
Such a sampling is expected to be more efficient and would extend the applicability 
of the method to problems where A is any region of positive measure and thus to 
a subset of constrained problems. 
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